6th EUPOS Meeting

NATIONAL REPORT OF SLOVENIA

SANDI BERK, GORAN TISAK
(SURVEYING AND MAPPING AUTHORITY OF THE REPUBLIC OF SLOVENIA, LJUBLJANA)

Budapest, October 30–31, 2019
PRESENTATION TOPICS

• Active GNSS Networks: SIGNAL & Zero Order

• EUREF Slovenia 2016 GNSS Campaign: Results, Implementation & Future Challenges

• New Coordinate and Height Reference Systems in Slovenia

• Other Activities
SIGNAL NETWORK (GBAS)

- **16** continuously operating GNSS stations in Slovenia (8 Trimble + 8 Leica)
- **+14** continuously operating GNSS stations in Austria, Croatia, Hungary & Italy
- **1** EPN station (GSR1 – Ljubljana, EUREF Class A)
- Trimble Pivot Platform
ZERO ORDER GNSS NETWORK

- 6 continuously operating GNSS stations in Slovenia (Leica)
- 4 of them are twin stations, 1 combined with a tide gauge station, 1 with a seismic station, 1 near an old triangulation point, 1 near an absolute gravimetric point; all stations connected to the first order levelling network
- Operating for more than 3 years, Alberding Quality Control
EUREF SLOVENIA 2016 GNSS CAMPAIGN

• **48** passive GNSS stations in Slovenia (EUREF points from old campaigns)
• **69** continuously operating GNSS stations
• **80** consecutive daily sessions with the mean epoch 2016.75
• Minimum constraint solution, coordinates only (EUREF Class B, ETRS89/D17)
The Goals of the Campaign

- **To check and improve the consistency** of coordinates in the passive (EUREF points) and active (SIGNAL stations) networks

- **To connect EUREF and SIGNAL Networks** with the newly established Zero-Order Network

- **To find an evidence for active tectonics** in the EUREF densification area (20 years after the first realization of ETRS89)
Differences between ETRS89/D96 & ETRS89/D17 coordinates

Large coordinate differences!

Up to 80 mm north component
The Results of the Campaign

- **ETRS89/D17 coordinates** (EUREF Class B solution, accepted in Amsterdam 2018)
 IGb08/ETRF2000, epoch 2016.75

- **ETRS89/D96-17 coordinates** (compromise practical solution to be used in the SIGNAL Network as an improved set of coordinates – optimal rigid transformation in order to be as much as possible close to the previous realization)
 Optimal 6 parameter transformation from IGb08/ETRF2000, epoch 2016.75, into ITRF96/ETRF96, epoch 1995.55:

<table>
<thead>
<tr>
<th>SOLUTION UNITS</th>
<th>Tx (mm)</th>
<th>Ty (mm)</th>
<th>Tz (mm)</th>
<th>D (ppb)</th>
<th>Rx ("001")</th>
<th>Ry ("001")</th>
<th>Rz ("001")</th>
</tr>
</thead>
<tbody>
<tr>
<td>D96-17</td>
<td>236.64</td>
<td>-98.51</td>
<td>-201.27</td>
<td>0.00</td>
<td>-17.791</td>
<td>3.673</td>
<td>-24.369</td>
</tr>
</tbody>
</table>

- **ETRF2000 velocities** for the passive EUREF points
Large coordinate corrections!

Estimated median Hz component is 23.1 mm
Estimated ETRF2000 horizontal velocities

Nonhomogeneous HZ velocities!

Estimated median Hz component is 2.7 mm/y
EUREF SLOVENIA 2016 GNSS CAMPAIGN

Implementation of the Results of the Campaign

- Testing of the impact of changes to the RTK services
 - testing environment /backup server/
 - various receivers (Leica, Trimble, Javad ...) and RTK services (SST, VRS, MAC ...)
 - checking coordinate differences: ETRS89/D96 vs ETRS89/D96-17
EUREF SLOVENIA 2016 GNSS CAMPAIGN

Implementation of the Results of the Campaign

• Testing of the impact of changes to the RTK services
 – countrywide GNSS test network:
Implementation of the Results of the Campaign

- Changes in the SIGNAL network planned for January 1, 2020
 - new log files for all SIGNAL stations
 - changes in the Trimble Pivot Platform software
 - ETRS89/D96-17 coordinates of stations ← distribution coordinates
 - ETRF2000 velocities for GSR1 (Ljubljana) used for all stations
 ... to assure better production coordinates (in ITRF2014, current epoch)

Hz component is 2.0 mm/y
Future Plans and Open Issues

• **First set of velocities in the SIGNAL and Zero Order Networks** (for the three-year time span) is expected (December 2019)

• **Are they sufficient for the EUREF dense velocity field?**... having in mind
 – the quality of stations (roofs of buildings)
 – the density of stations (average displacement ~50 km)
 – the active tectonics of the area concerned
Future Plans and Open Issues

- Do we need densification of active GNSS networks? eg. passive geodynamic GNSS network what period is recommended for the GNSS campaigns?

- Do we need to consider the implementation of a (semi)kinematic reference frame in the future?

- Categorifying criteria for private GNSS network correction providers?
New height reference system was established (SVS2010)

- New levelling data
 measurements in years 2005–2015

- New height datum
 based on the Koper tide gauge ... replaced old Trieste datum
 mean epoch 10. 10. 2010

- New height reference surface
 quasi-geoid model SLO_VRP2016/Koper
Transformation into the ETRS89 has been finished for all national spatial datasets!

- National transformation model was used
 continuous and reversible triangle-based model
 field tests for cadastral dataset (80 test areas – mostly towns);
 - accuracy ~10 cm but
 - some areas found to be inconsistent with the national CRS
 (systematic errors)

- Freeware transformation tools
 supporting most popular vector and raster formats

- Revised EPSG Geodetic Parameter Registry
 new EPSG codes for CSes, CRSes & transformations
OTHER ACTIVITIES

The next EUREF Symposium is in **LJUBLJANA, May 27–29, 2020**
OTHER ACTIVITIES

The next EUREF Symposium

• Planed and realised activities were presented at the EUREF GB Meeting in Warsaw on October 15, 2019

• The Tutorial is titled »Quality and Legal Management of Data and Products of Active GNSS Networks« and will consists of three parts:
 1) Legal issues and relations between public and private active GNSS networks
 2) Quality assurance and monitoring of active GNSS networks
 3) Role of active GNSS networks to acces national coordinate and height reference frames

Suggestions are Welcome!
Thank you for your attention

sandi.berk@gov.si