

STATE AUTHORITY FOR GEOSPATIAL INFORMATION

CORS SYSTEMS INFRASTRUCTURE SECTOR

Albanian GNSS Network National Report

CONTENT:

- 1. INTRODUCTION
- 2. BACKGROUND
- 3. HISTORY OF GEODETIC WORKS IN ALBANIA
- 4. ROLE OF G.R.F FOR ALBANIA
- 5. THE NEW GNSS NETWORK, ALBCORS
- **6.** NEXT STEPS REGARDING GEODETIC REFERENCE FRAME

Key Words: ALBCORS, ASIG, CORS, CRS, KRGJSH-2010,

3

INTRODUCTION

The total number of staff is 42

Average annual budget is 0.5M €

BACKGROUND

- State Authority for Geospatial Information (ASIG) was established in 2013, according to law 72/2012 "On the organization and functioning of the national infrastructure of geospatial information in the Republic of Albania"
- In terms of executing the regulations of Law nr. 72/2012 and having regard the EU requirements related with CRS, we are engaged to establish a modern geodetic reference frame, based on GNSS technology, and will support accurate and efficient horizontal and vertical positioning throughout Albania!
- ASIG is the responsible organization for establishment of Geodetic Reference Frame in Albania, including:

The new Geodetic Reference Frame

- National GPS Network (Active + Passive)
- National Gravimetric Network
- National Leveling Network
- National Tide Gauge Network
- Magnetometric Network

ROLE OF G.R.F FOR ALBANIA

Provide a common, accurate & reliable reference for positioning throughout Albania!

- Improve the quality of existing Geo-information data (Create cadastral maps => prevent property conflicts; smooth transactions etc.)
- Provide accurate and reliable information for urban planning and decision making to territory administration.
- Support **development of geographic information systems** for planning and service management functions (boundary determination for site planning, land use regulation, hydrology, soil conservation etc.)
- Provide a **reliable and accurate geodetic base** to Surveying and Mapping companies for implementation of all **engineering projects** throughout our country (cost & time effective).
- Monitoring **crustal deformation** and tectonics activity (high demand from the Albanian Institute of Geosciences).
- Monitoring the distribution of precipitable water vapor in the atmosphere for weather prediction (Improve the countermeasures to floods).

HISTORY OF GEODETIC WORKS IN ALBANIA

19**70-197**7

Nivelimi Shtetëror i klasit të parë

1970-1986

2007-2008

2008

2013-2014

2019-2020

ALB86, Gauss Kruger (El, Krassovsky)

EUREF89 epoch 2008.0

ETRF2000 epoch 2008.0

KRGJSH, TM, ETRS89

GPS Survey

AlbPos

GNSS Survey

ALBCORS

Established on 2008, (EU donation 1.7M €)

- 16 Roof Type Antennas.
- 75km aver. dist.
- Maintained by Geographic Military Institute.
- After 2014 system restarted operating at IPRO with support of Lantmäteriet (some stations changed locations)

Established on 2020, (ASIG investiment 0.65M €)

- 21 ground pillars + 6 Roof Type Antennas.
- 35km aver. dist.
- Maintained by contractor company till 2024, supervised by ASIG.

Why a new CORS system?

Problems regarding previews ALBPOS system:

- Week stability of antennas.
- \triangleright Old equipment (>10years).
- > 75km average distance, need for more stations.
- > Not sustainable & not reliable.
- ➤ Not certified (doesn't fulfill national and EU requirements for CORS).

PHASES OF IMPLEMENTATION OF ALBCORS

- Drafting the technical project
- Technical Specifications and TOR
- Tendering and Criteria of the Winner Company
- Construction and installation of the new CORS system;
- Testing & system validation;
- Promotion activities & utilization of new CORS;
- Development of guidelines/manuals on maintenance of CORS;
- Provide services with the required accuracy/precision;
- Develop efficient methods for surveying by taking advantage of the evolving GNSS and communication technologies;

THE NEW GNSS NETWORK, ALBCORS

- 21 Active GNSS Pillar Point
- 6 Active GNSS Roof Point
- Ground reinforced concrete pillars
- Average distance: 40-50km
- According to EU requirements
- Integration with the existing

 GNSS system of Inst. of

 Geosciences

Effects:

- Create a time-based dynamic Geodetic Reference frame.
- Implement & Maintain ITRS/ETRS in Albania.
- Provide a common and reliable reference for accurate gathering & creation of geo-information.
- Create Database for Land movement and crustal deformations (in cooperation with Albanian Institute of Geosciences).
- Improve counter-measures to foods and other natural disasters.
- Productive & efficient use of GNSS for engineering surveying works (time & cost effective).
- Support navigation and augmentation.
- Research purposes.

The construction of the NETWORK

Pozicioni nuk është i rrezikuar nga ndikimi i zhurmave apo interferencave

që ndikojnë në sinjalin satelitor

Construction of 21 CORS pillars and 21 1st order passive GPS points

Field reconnaissance & site selection

Vlerësimi:

cilave janë nën 15° nga horizonti.

NET S9 GNSS REFERENCE REICEVER

ALBCORS Stations Equipment

Description

- 1 NET S9 Reciever
- 2 Choke Ring Antenna CR3-G3
- 3 Teltonika RUT955
- 4 Metalic case (Rack)
- 5 Plastic case (Box)
- 6 Sunlight Batery100V
- 7 Solar Panel 100x80cm
- 8 Automat 10A
- 9 Inverter Energjie 220v -> 12V
- 10 Sim Card
- 11 Automatic power source command
- 12 Solar Panel energy controller
- 13 Electric and internet cable
- 14 Thunder protection

RRJETI AKTIV GNSS ALBCORS

The construction of the NETWORK

ACTIVE GNSS PILLAR POINT

ACTIVE GNSS ROOF POINT

Earth

Battery

Underground box

☐ ALBCORS monitoring center program

(GNSMART, GEO++) consists of four modules:

- Module for monitoring CORS RTK Service, administration of CORS network reference stations, and user management.
- Module for compensation and calculation of data (corrections) in real time.

> The program also enables:

- Registration of the users.
- Downloading station data at different intervals (from 1-30 seconds) to RINEX format (versions 2 and 3).
- Real-time computation of a GNSS multi-station solution of RTK service with sustainable accuracy, reliability and availability
- Graphic interface for:
 - Definition of correction models and parameters
 - Users position
 - Signal strength for stations
 - Corrections (ephemeris data, ionospher, multipath ect.)

☐ Testing and sustainability of the network ALBCORS:

- A series of field measurements have been performed:
 - RTK Method
 - Static Method (Post-processing)
- Instruments:
 - GNSS Receivers, SOKKIA GRX2
- Accuracy:
 - RTK Method: +/- 2 cm (2D)

+/-3 cm (3D)

- PP Method: +/- 1 cm (2D dhe 3D)

☐ Services that ALBCORS system provide

ALBCORS service	Procedure/ method	Data transfer manner	Accuracy	Data format
DPS differential positioning	code network solution in real- time	Wireless Internet (GPRS, UMTS,) NTRIP protocol, GSM	±0.3m to ±0.5m	RTCM 2.3 RTCM 3
VPPS highly precise positioning	network solution of phase measurements in real-time	Wireless Internet (GPRS, UMTS,) NTRIP protocol, GSM	±2 cm (2D) ±3 cm (3D)	RTCM 2.3 RTCM 3
GPPS Geodetic highly precise positioning	post-processing	Internet (FTP, e-mail)	±1cm (2D, 3D)	RINEX 2.1 RINEX 3

NTRIP CASTERS and MOUNTPOINT

Streams

Caster	Mountpoint	Identifier / Description	Format	Format Details (Rate)	Carrier Phase	GNSS	Network	Country Code
2101	CMR_plus	VRS	CMR+	1(1), 3(1)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	FKP01	FKP v31	RTCM31	1004(1), 1005(10), 1007(30), 1012(1), 1030(30), 1031(30), 1033(60), 1034(10), 1035(10)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	MAC01	MAC v31	RTCM31	1004(1), 1005(10), 1007(30), 1012(1), 1014(10), 1017(10), 1030(30), 1031(30), 1033(60), 1039(10)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	NSTA-GG	Nearest Station	RTCM32	1074(1), 1084(1), 1005(10), 1007(30), 1032(10), 1033(60)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	NSTAT	Nearest Station	RTCM32	1074(1), 1084(1), 1094(1), 1005(10), 1007(30), 1032(10), 1033(60)	L1 L2	GPS+GLO+GAL+BDS	ALBCORS	ALB
2101	PRS-LEGACY	PRS v30	RTCM30	1004(1), 1012(1), 1005(10), 1007(30), 1032(10), 1033(60)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	PRS-MSM	PRS v32	RTCM32	1074(1), 1084(1), 1094(1), 1005(10), 1007(30), 1032(10), 1033(60)	L1 L2	GPS+GLO+GAL+BDS	ALBCORS	ALB
2101	PRS01	PRS v30	RTCM30	1004(1), 1005(10), 1007(30), 1012(1), 1030(30), 1031(30), 1032(10), 1033(60)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	VRS-MSM-GG	PRS v32	RTCM32	1074(1), 1084(1), 1005(10), 1007(30), 1032(10), 1033(60)	L1 L2	GPS+GLO	ALBCORS	ALB
2101	VRS_RTCM_2.3	PRS v2.3	RTCM2.3	1(1), 3(17), 14(60), 16(300), 18(1), 19(1), 22(10), 23(10), 24(10)	L1 L2	GPS+GLO	ALBCORS	ALB

The service for a period of time (til 2020) it will be for free There are around 200 active public and private users that use ALBCORS services

Users of RTK and PP Service

- Municipalities
- State Authority
- Universities
- Civil Engineering
- Measurement consult
- National Land Survey
- Other

Next steps regarding Geodetic Reference Frame

- Sustainable maintenance service of ALBCORS until 2024;
- ALBCORS Managment Development and Technical Development
- Realization of one EPN point for the territory of Albania;
- Find solutions with neighborhood countries for a common reference frame;
- Cover all Albania with **gravity measurements** (are expected **1.2M** € of investments);
- Determine the precise Geoid model of Albanian territory;
- Number of benchmarks shall be kept minimum enough to maintain the height system (accuracy check and validation purposes only);
- Shift the vertical datum from leveling-based to geoid-based one in order to realize a more sustainable, and up to date vertical reference frame & develop the "Smart Surveying" technique based on GNSS & precise Geoid model;
- The over-all objective in the strategy is to make decision makers aware of the advantages of using a modern technology for geospatial data capture.

THANKYOU FOR YOUR ATTENTION!

CORS SYSTEMS INFRASTRUCTURE SECTOR

Rudens Konomi (Geophysics Engineer) Specialist of Infrastructure and CORS system Sector

Rudens.Konomi@asig.gov.,al

Phone: 00355692713768 https://geoportal.asig.gov.al/