

GNSS Jamming and Spoofing: how serious can it be?

Polona Pavlovčič Prešeren

Contents

- GNSS Bias Sources
- Deliberate Interference
- Jamming (field experiments & results: case from Slovenia)
- Spoofing (field experiments & results: case from Austria)
- Discussion

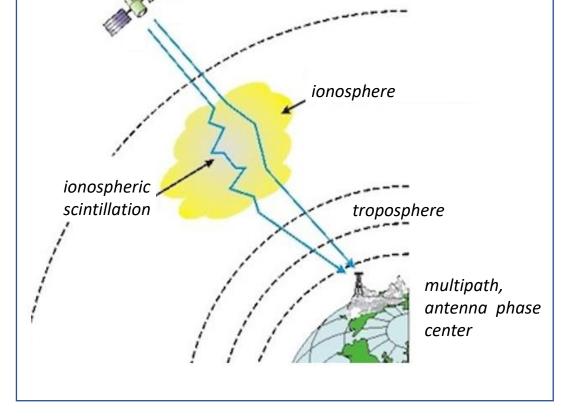
GNSS Biases Sources

satellite orbit, clocks

Error Sources

Satellite Errors:

- Satellite Clock (~ 2 m)
- Satellite Orbit
- Satellite Ephemerides (< 2 m)


Atmospheric Errors:

- Ionospheric refraction (~ 4 6 m)
- Troposphere (~ 0.7 m)

Receiver's Errors:

- Multipath (~ 1.5 m)
- Noise of the receiver (~ 0.5 m)

Interference = unpredictable/unknown/variable

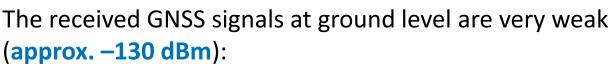
Faculty

of Civil and Geodetic Engineering

University of Ljubljana

EUP

European Position Determination System


jammers

Motivation

radio-frequency

interference

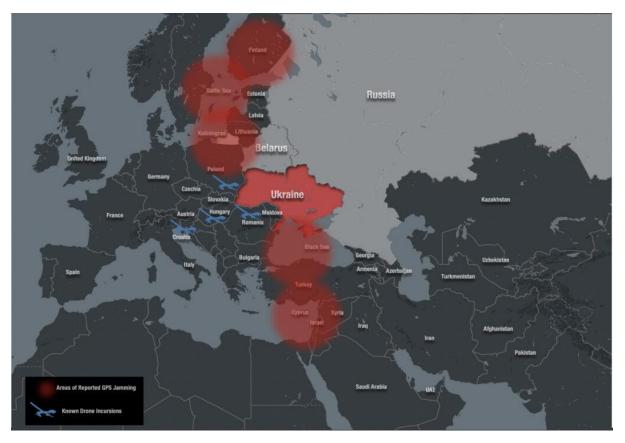
Unintentional		Intentional			
Wideband modulation	 TV transmitter's harmonic microwave link transmitters 	Wideband Gaussian	Intentional noise jammers		
Wideband pulse	 Radars (burst transmitter's) ultrawideband 	Wideband spread spectrum	Intentional spectrum jammers or pseudolites		
		Narrowband	Intentional CW		

GNSS signals

The weakness makes the signals sensitive

to interference.

Radio Frequency Interference (RFI)


continuous

wave (CW)

Current Jamming Risks in Europe

Thousands of GNSS jamming and spoofing incidents are reported in each year.

Source: https://ops.group/blog/spill-over-effect-new-airspace-risks-in-europe/

EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022

Some of reported GNSS attacks

Thousands of GNSS jamming and spoofing incidents are reported in each year (how many more are unreported)?

Reported GNSS Attacks

2009 and 2012:

At Newark Airport in 2009 and 2012, interference to a new, GPS-based landing system was traced to lorries travelling along the adjacent New Jersey Turnpike.

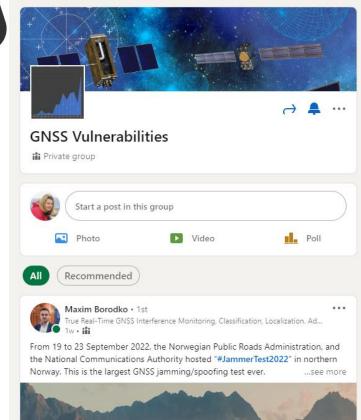
February 2016:

GNSS error caused satellites to provide incorrect time information, impacting operations of several companies

March 2016: The fourth round of GPS jamming by North Korea since 2010.

November 2018: During NATO military exercises, airspace in Finland was disturbed by GNSS jamming.

June 2019: Jamming caused disturbances of operations at Israeli airport, source unknown.


March 2022:

GNSS permanent attacks especially on Ukrainian critical network infrastructure.



GNSS Vulnerabilities LinkedIn group

EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022

Source: https://www.mobatime.com/article/jamming/

Jamming "white noise interference"

Effects:

- loss of accuracy
- loss of GNSS positioning/timing

University of Liubliana

Faculty

Engineering

of Civil and Geodetic

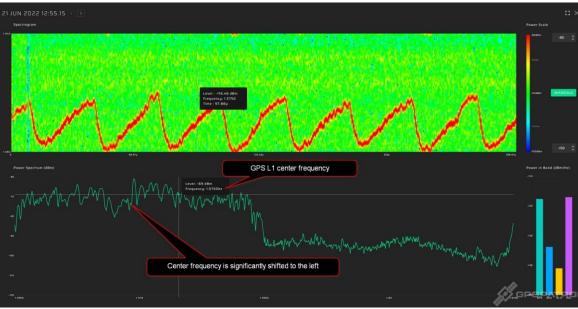
Spoofing

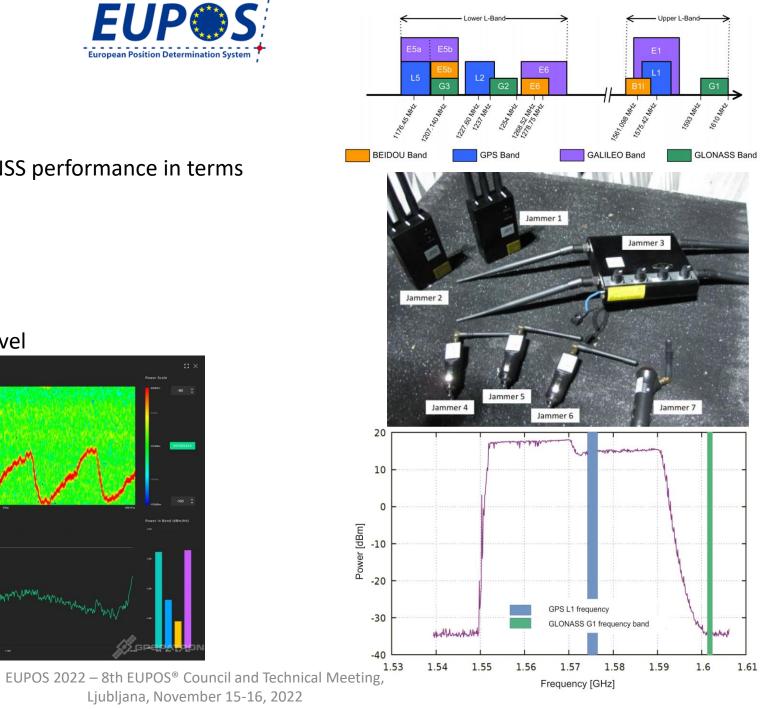
"intelligent form of interference"

Effects:

- fooling the user into wrong position
- misleading the user into wrong time

Source: https://www.ohb-digital.at

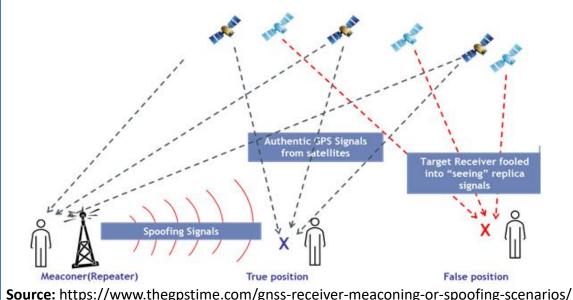



Jamming

Jammers significantly deteriorate GNSS performance in terms ٠ of accuracy, integrity, availability.

Chirp jammer's properties:

- almost constant amplitude
- almost periodic frequency
- working at single or multi-frequency level



Source: gpspatron.com

Ljubljana, November 15-16, 2022

GNSS attacks' influences on critical infrastructure

Critical infrastructure must not depend on GNSS timing

Recent events have reminded us of the vulnerability of GNSS systems and related positioning, navigation and timing services. Time to look at the risk this creates for the business continuity of critical infrastructure.

Ulrich Kohn March 09, 2022

PNT resiliency takes on greater urgency

How great is the risk posed by PNT vulnerabilities and what action should you be taking?

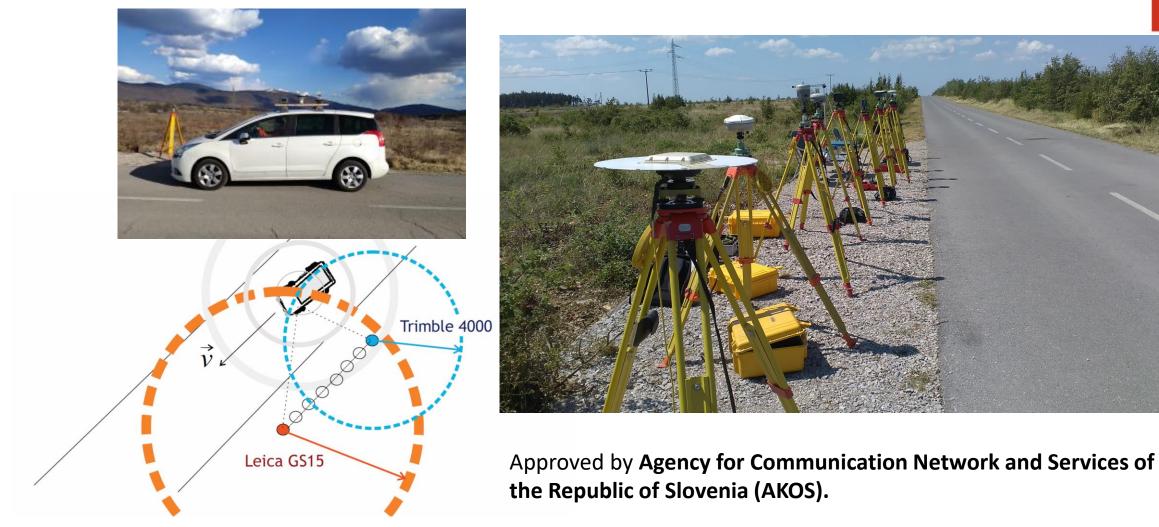
The future of smart grid networking

How is new innovation helping utility network operators keep pace with quickly changing energy markets?

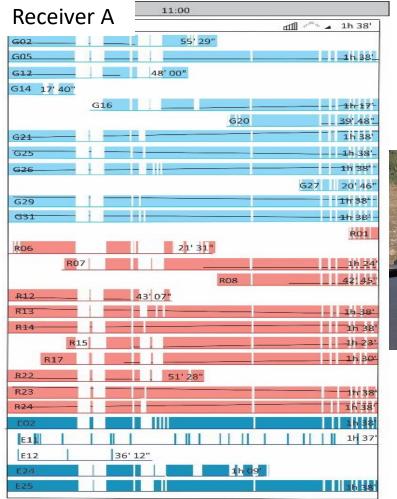
Ulrich Kohn June 10, 2022

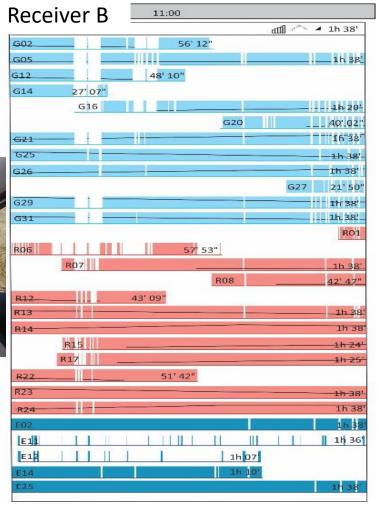
Talking sync strategies for smart grids

How can utility networks achieve the assured PNT services they need to stay operational and online? Time to consider the future of ...

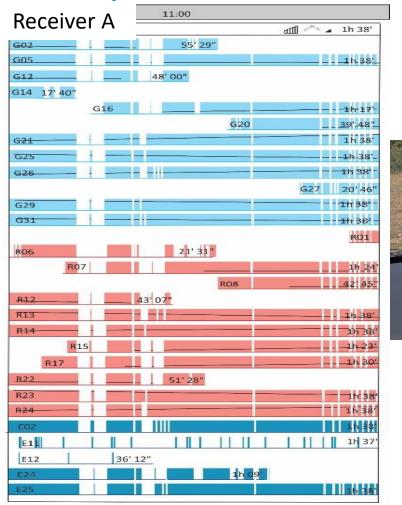

Nino De Falcis March 11, 2022

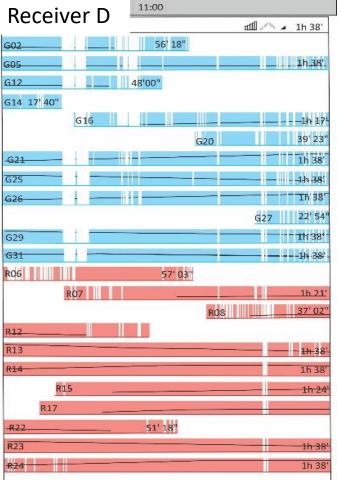
EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Liubliana, November 15-16, 2022


Jamming experiments in Slovenia



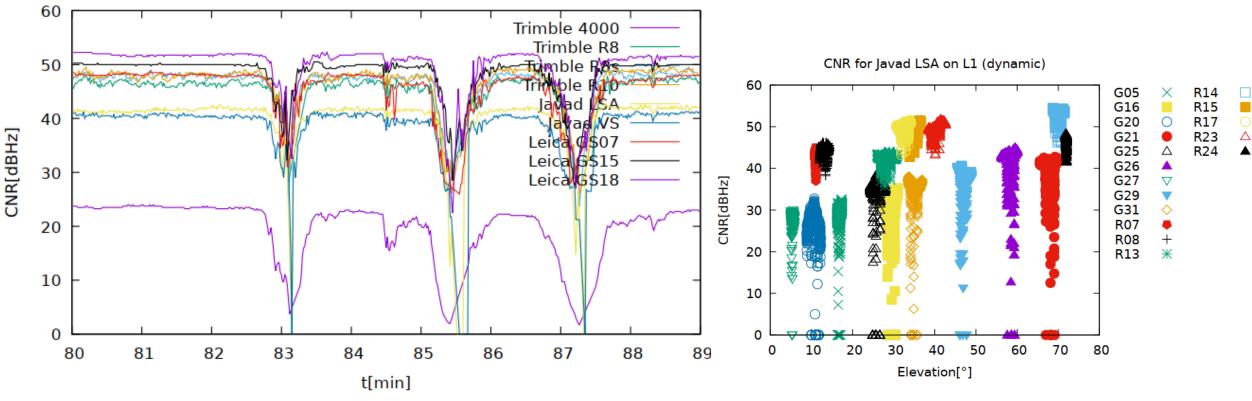
EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022


L1/E1 Chirp Jammer: Response of two receivers #1


L1/E1 Chirp Jammer: Response of receivers #2

Receiver C	11:00				
			d∭ ,₃Pat		1h 38'
G02	46' 36"				
<u>G05</u>				-	1h.38'
<u>G12</u>	45' 38"				
G14 12'					
G16					1h 13'
			G20		28' 56"
G21					1h 38'
G25					-1h 38'
G25					
020					16 38
				-	527 11'
G29					1h 38'
G31					_1h-38'
					R01
R06 32' 09"					
R07	2				1h 14"
		R08			40' 52"
R12 34' 18	**				
R13					1h.38'
<u>R14</u>					1h 38'
R15 _					<u>- 1h 17'</u>
R17 _					- 1h 21'
R22	42' 58"				
R23					1h 38'
R24		-		_	1h 38'

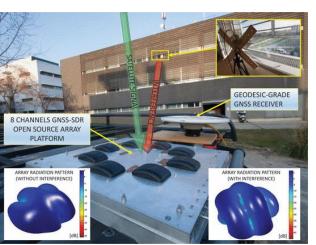
L1/E1 Chirp Jammer: Response of receivers #3


Receiver E	11:00
Receiver L	d∭ , ^{i¢#u} , ⊿ 1h 38'
G02 21' 31"	
<u>G05</u>	1h.38'
G12 21' 31"	
G14 21' 31"	
G16	1h 38*
	G2031'-23"
-621	1h 38
G25	
- G26	1h 38
	G27 22' 46"
G29	
G31	
R06 21' 31"	NU1
R07	1h 24'
	R08 31'32"
R12	
R13	h_38'
R14	1h 38
R15	
R17	1h 29'
R22 21' 39"	
R23	
R24	1h 38'
E02	1h 32'
E24	<u>1h 03</u> '
E25	Th 38

Jamming effect on C/N0

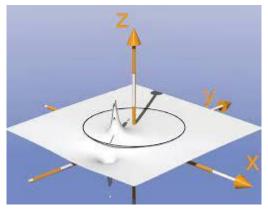
SNR for G21 on L1

The estimated C/N₀ can reveal the presence of interfering signals. It is highly recommended to verify if C/N0 measurements are affected by correlated changes.


> EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022

Defenses against Jamming

Detection and Mitigation


- antenna defenses

signal processing defenses

 (adaptive notch filters)
 minimization of the
 energy of the signal at
 the output of the filter

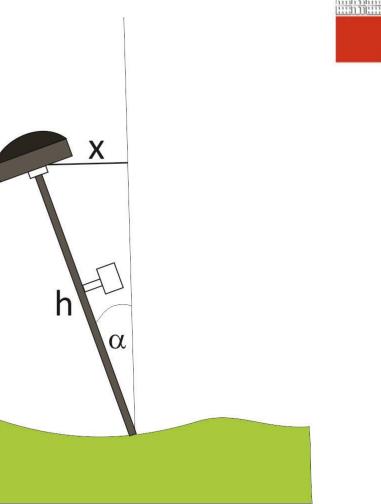
Adaption block which tracks the jamming instantaneous frequency.

University of Liubliana

Faculty

Engineering

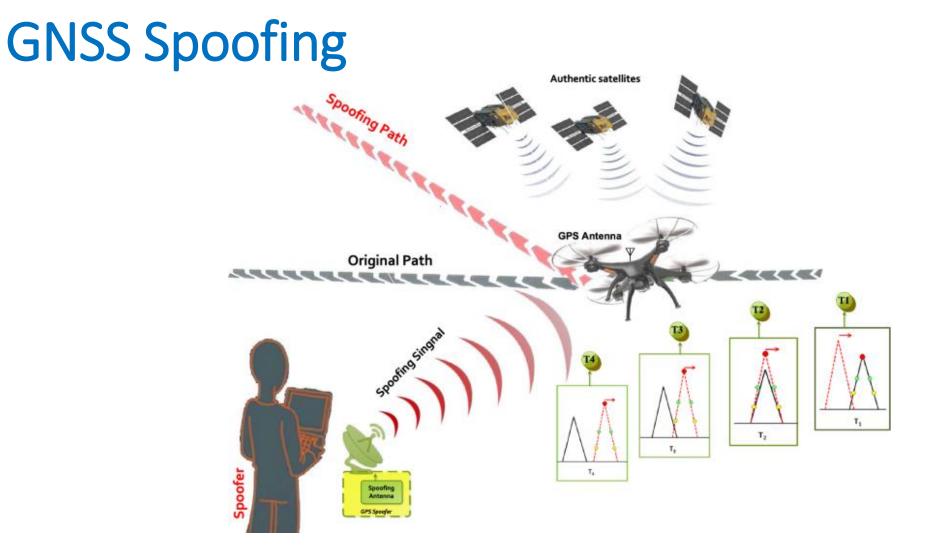
of Civil and Geodetic


Jamming Mitigation Solutions

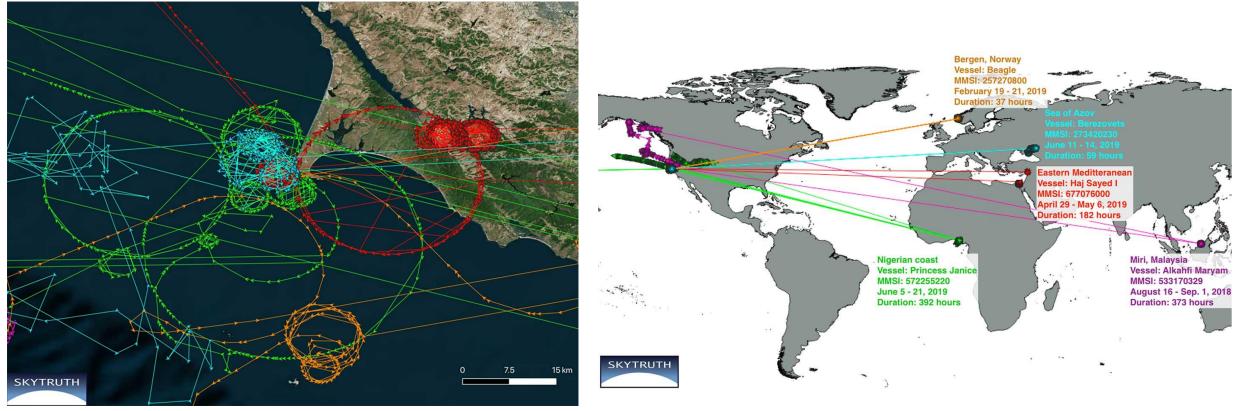
An efficient way of GNSS jamming mitigation based on polarization exists:

 Physical Rotation of the antenna in synchronized way to the jammer's location

 \rightarrow not appliable for static receivers


• Digital Rotation of the antenna in timedomain.

University



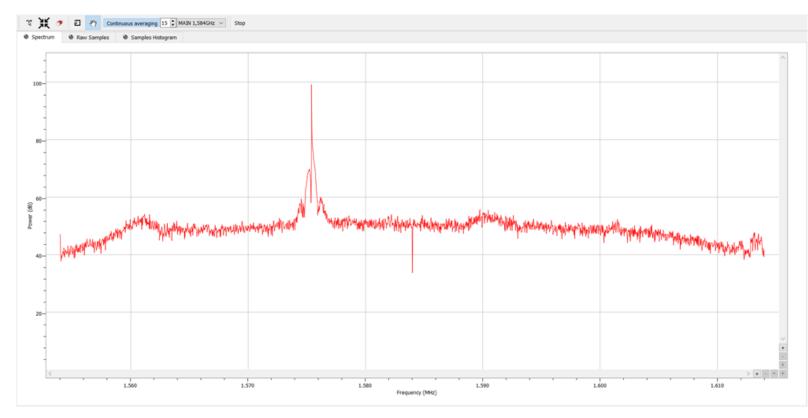
Source: Shafiee, E & Mosavi, M. & Moazedi, Maryam & Shafiee, Ebrahim. (2021). A Modified Imperialist Competitive Algorithm for Spoofing Attack Detection in Single-Frequency GPS Receivers. Wireless Personal Communications. 119. 10.1007/s11277-021-08244-2.

GNSS Spoofing Accidents: Maritime In the most recent observations, the actual locations of the ships were thousands of miles away. In most cases,

literally halfway across the globe.

Source: https://www.gpsworld.com/new-gps-circle-spoofing-moves-ship-locations-thousands-of-miles/

Spoofing equipment

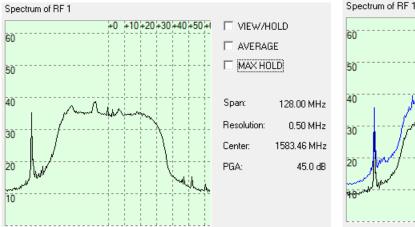

Source: https://www.ohb-digital.at

First sign to look out whether you are spoofed...

The spoofed signals are visible in the radio-frequency spectrum.

The low power of GPS signals means that they are barely discernible from the thermal noise background.

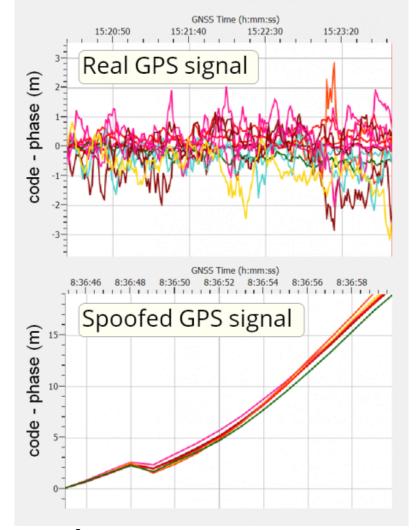
To spoof a receiver, the SDR signals are transmitted with a much higher power making them clearly visible above the background.


VIEW/HOLD

AVERAGE

MAX HOLD

2nd sign to look out whether you are spoofed...


 128.00 MHz
 40
 Span:
 128.00 MHz

 0.50 MHz
 30
 7
 8
 8
 8
 8
 8
 12
 8
 8
 8
 8
 8
 8
 8
 8
 8
 8
 15
 8
 8
 8
 8
 8
 9
 9
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9

+0 +10+20+30+40+50+0

Spectrum uBlox F9P before and during spoofing

Divergent code minus carrier behaviour

EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022 Source: https://www.septentrio.com/en/learn-more/ insights/spoofing-your-gps-attack-proof

21

3rd sign to look out whether you are spoofed...

Confused RINEX data

- Incomplete and/or inaccurate NAV and OBS files

REC # / TYPE / VERS

					ANT # /	TYPE			
42	210703.3314	1093852.143	9 465101	17.9510	APPROX 1	POSITION XYZ			
	0.0000	0.000	0	0.0000	ANTENNA	: DELTA H/E/N			
G	8 CIC LIC 1	DIC SIC C2X	L2X D2X S	52X	SYS / #	/ OBS TYPES			
R	8 C1C L1C 1	D1C S1C C2C	L2C D2C S	52C	SYS / #	/ OBS TYPES			
E	8 CIX LIX	DIX SIX C7X	L7X D7X S	57X	SYS / #	/ OBS TYPES			
С	8 C11 L11 1	D1I S1I C7I :	L7I D7I S	57I	SYS / #	/ OBS TYPES			
20	022 05	26 10	43 00.	.9960000 GPS	TIME OF	FIRST OBS			
20	022 05	26 13	20 31	.0010000 GPS	TIME OF	LAST OBS			
G LI	LC				SYS / PI	HASE SHIFT			
G L2	2X 0.00000				SYS / PI	HASE SHIFT			
R LI	LC				SYS / PI	HASE SHIFT			
R L2	2C				SYS / PI	HASE SHIFT			
E LJ	LX 0.00000				SYS / PI	HASE SHIFT			
E L	7X 0.00000				SYS / PI	HASE SHIFT			
C LI	LI				SYS / PI	HASE SHIFT			
C LT	71				SYS / PI	HASE SHIFT			
18	R01 1 R02 -	-4 R03 5 R0	5 1 R06	-4 R07 5 R08 6	R09 -2 GLONASS	SLOT / FRQ #			
	R12 -1 R13	-2 R14 -7 R1	5 0 R16	-1 R17 4 R18 -3	R22 -3 GLONASS	SLOT / FRQ #			
	R23 3 R24	2			GLONASS	SLOT / FRQ #			
C10	C 0.000 C	1P 0.000	C2C 0.	.000 C2P 0.000	GLONASS	COD/PHS/BIS			
1					END OF 1	HEADER			
> 20	022 05 26 10	43 00.99600	00 0 34						
	24128382.8				32.000				
G18	19124273.7	38 1 1004987	46.131 2	-705.837	50.000	19124271.008 1	78310718.865 1	-3103.156	50.000
G31	22503292.4	32 1 1182555	68.763 2	-3982.117	50.000	22503292.188 1	92147205.696 4	-3103.156	50.000
	20937183.7			-3124.182	49.000	20937181.730 1	85734252.073 3	-2434.708	37.000
	19336203.7			-207.467	48.000		79178547.601 1	-161.844	45.000
	22213836.2			-2191.955	43.000	22213834.817 4	90961939.46115	-1708.038	40.000
C27		51 1 1101765	02.433 4	-2524.497	38.000				
C36	21780249.4	30 2 1134154	78.05721	-1202.650	44.000				
C28		59 1 1328152		-3663.269	41.000				
C30	20614213.3	85 1 1073436	49.188 1	213.082	48.000				
	00000000000	11 2 1960854	77.40824	-1813.245	38.000	37656140.799 1	151625659.781 4	-1401.898	43.000
									32.000
C13	36957160.4	54 1 1924456		-1439.653	43.000	36957155.436 1		-1112.733	
C13 R14	36957160.4 18357869.9	73 1 978577	96.854 2	-1736.244	46.000	18357871.081 1	76111641.785 2	-1350.068	42.000
C13 R14 R17	36957160.4 18357869.9	73 1 978577 18 1 1098548	96.854 2 14.513 2	-1736.244 2247.446		18357871.081 1			

SIGNS FOR SPOOFED SIGNALS IN RINEX "OBS"

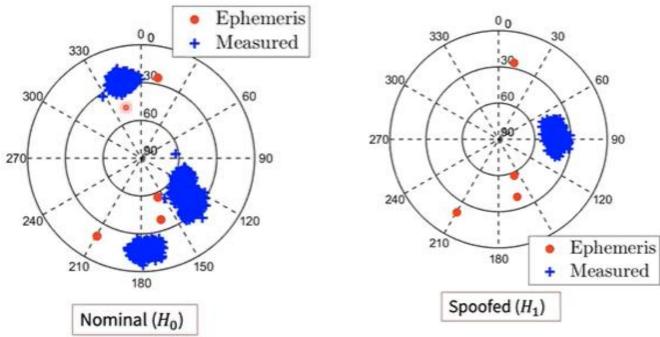
- 1. Very high SNR value (50.0)
- 2. The same Doppler data (impossible for two satellites).
- 3. Added satellite data for satellite not in view.

Faculty

Engineering

of Civil and Geodetic

University of Liubliana



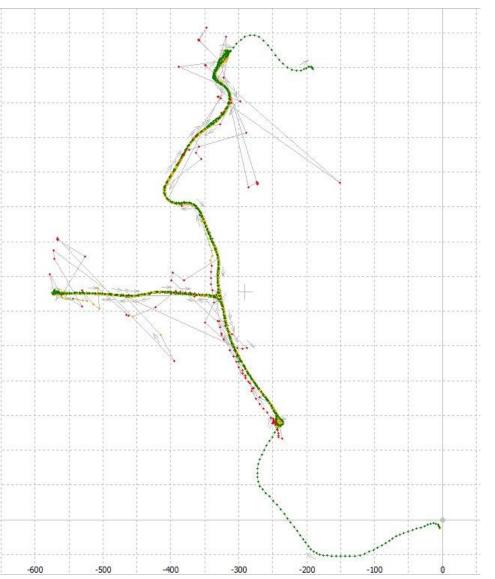
GNSS spoofing detection through spatial processing

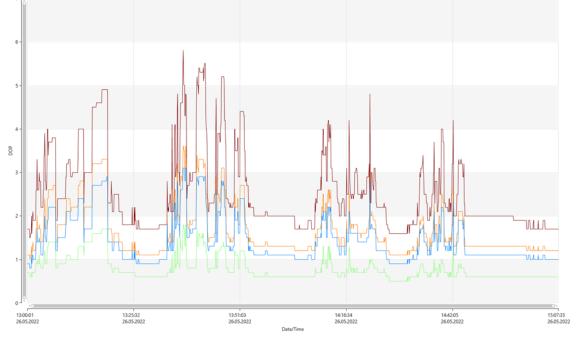
SPOOFED NAVIGATION MESSAGE

- An algorithmic framework for signal-geometry-based approaches of GNSS spoofing detection exist.
- Algorithms are based on formulation of a simple vs. simple hypothesis test independent of nuisance parameters that results in significantly reduced missed detection probability compared to prior approaches.
- It is highly tractable such that it can be computed online by the receiver.

Hypothesis testing.

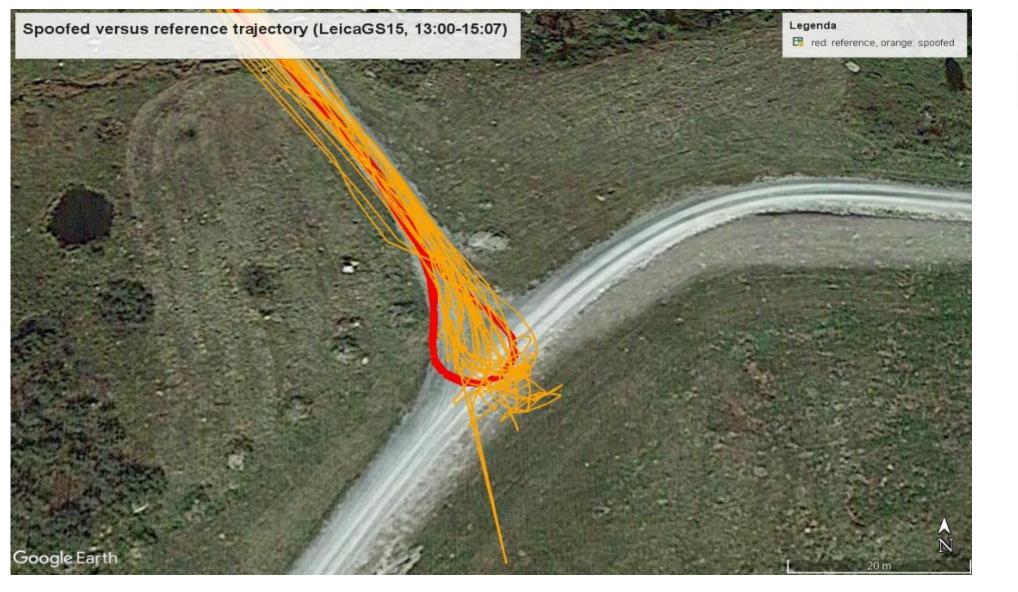
Faculty


Engineering


of Civil and Geodetic

University of Liubliana

Leica GS15 Performance during Spoofing



11111111

Conclusions

- It is required to cGNSS jamming and spoofing present a new threat to critical infrastructure.
- GNSS jamming causes a loss of GNSS lock for the receiver and the inability to regain the lock.
- Attack costs are low (from 10-300 EUR).
- Check the accuracy and quality of GNSS signals in real-time.
- It is advisable to strengthening National Resilience Through Responsible Use of Positioning, Navigation, and Timing Services.
- CORS networks could play a crucial role system should detect wide-range jamming or spoofing or can be used for attacker localization.

Thank you for your attention!

University of Ljubljana Faculty of Civil and Geodetic Engineering

Contact

University of Ljubljana Faculty of Civil and Geodetic Engineering Jamova cesta 2, SI-1000 Ljubljana, Slovenia From the CAT STEVENS & MR. BIG – Wild World: "... take good care I hope you make a lot of nice friends out there. But just remember there's a lot of bad and beware, beware."

Polona Pavlovčič Prešeren: polona.pavlovcic-preseren@fqq.uni-lj.si

EUPOS 2022 – 8th EUPOS[®] Council and Technical Meeting, Ljubljana, November 15-16, 2022