

GNSS Antenna Calibration – Current Status

Gerhard Wübbena, Martin Schmitz, Jannes Wübbena

Geo++® GmbH 30827 Garbsen, Germany www.geopp.de

Outline

- GNSS Antenna Calibration Overview
- Absolute Robot-based GNSS Antenna Calibration
- GNSS Antenna Group Delay Variation
- ANTEX Format Status
- Summary/Outlook

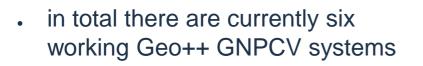
- . GNSS Antenna Calibration Overview
- Absolute Robot-based GNSS Antenna Calibration
- GNSS Antenna Group Delay Variation
- ANTEX Format Status
- . Summary/Outlook

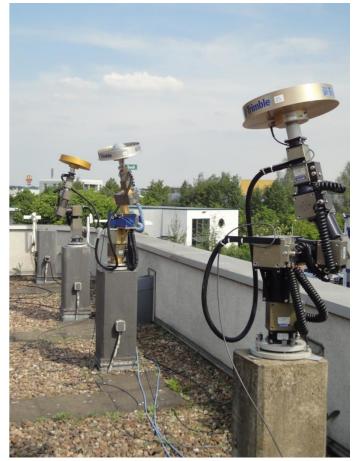
GNSS Antenna Calibration - Overview

- motivation and goals
- status late 1990s
 - problems with antenna corretions from existing relative field calibration methods
 - problems with antenna corretions from absolute chamber calibration
 - PCV corretions urgently needed for GPS (and later for GLONASS) applications
 with mixed antenna types (eg Network RTK, precise engeneering tasks, ...)
- requirements specified for an GNSS antenna calibration method
 - separation of phase center and variationen (PCV) and multipath effects (MP)
 - absolute PCV (independent from any reference antenna)
 - high resolution and accuracy of determined PCV
 - independent from station and location (eg MP and geographic latitude)
 - field calibration method

GNSS Antenna Calibration - Overview

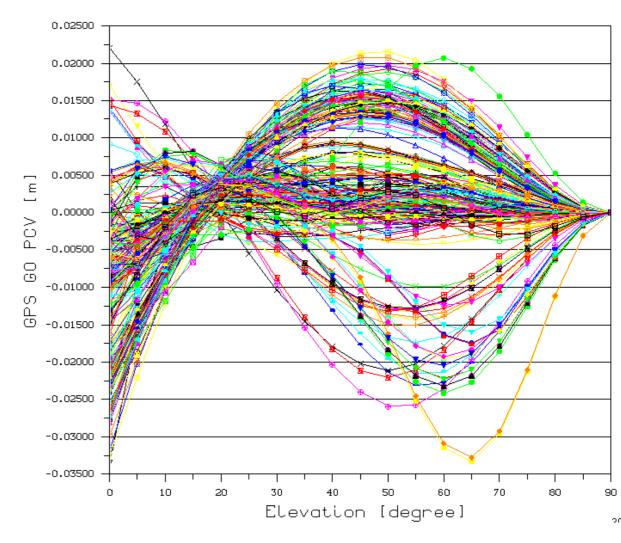
- motivation and goals today (2018)
- urgent need for
 - antenna corretions of **new frequencies** and GNSS (eg GPS L5, Galileo E6, GLONASS L3, ...)
 - satellite antenna corretions
 - group delay variations (GDV)
- requirements to resolve issues
 - consistency
 - with existing PCV pattern
 - of PCV and GDV pattern
 - of satellite and receiver antenna pattern
 - extension of absolute robot-based GNSS antenna field calibration
 - update of ANTEX exchange format


- charactistics of GNPCV service
- primary task of calibration
 - absolute*phase center and -variationen (PCV)
- robot excellent instrument to determine additional parameters
 - signal strength (carrier-to-noise, CN0)
 - Group Delay Variations (GDV)/
 Code calibration
 - near-field impact on antenna
- separation of multipath in near-field and far-field effects
 - absolute station calibration of multipath
- antenna calibration provides (since 2013)
 - GPS + GLO L1 and L2 PCV
 - GPS + GLO S1 and S2 CNV
 - GPS + GLO P1 and P2 GDV


Geo++ robot withTPSPN_A5 NONE

- Geo++ GNPCV systems
- robot-based absolute
 GNSS antenna field calibrationen
- development by Geo++ in cooperation with Institut für Erdmessung, Universität, Hannover
- marketing and enhancement/development through Geo++ since 2000
- 2000 Geo++, Garbsen, Germany (to be retired)
- 2000 ife, Hannover, Germany
- 2005 SenB, Berlin, Germany (retired)
- 2009 Geo++, **Garbsen**, Germany
- 2012 GSA, Canberra, Australia
- 2013 SenB, **Berlin**, Germany
- 2018 Geo++, Garbsen , Germany

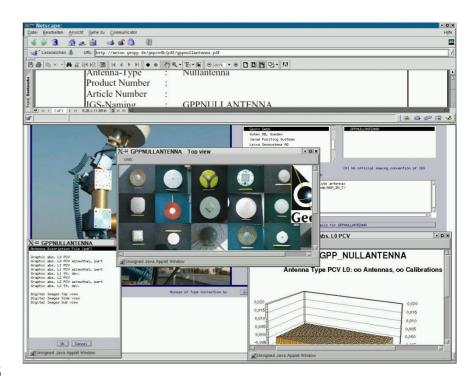
ife SenB GSA Institut für Erdmessung, Universität Hannover, Germany Senatsverwaltung für Stadtentwicklung Berlin, Germany Geoscience Australia, Canberra, Australia



three robot-test, Mai 2012, Geo++ Garbsen

- phase variation (PCV without offset) for different antenna types
- . 266 antenna types
- . Geo++ GNPCVDB database
- GPS L0 signal
- PCV difference to GPPNULLANTENNA
- magnitude of PCV
 - up to several cm
 - in high elevations

Elevation Dependent Difference from Type Mean GPPNULLANTENNA_NONE, SN:UNKNOWN GPS GO PCV [m]



L0 ionospheric free signal rule-of thumb L0 effects larger by factor of 3 than original signals (L, L2)

Geo++ GNPCVDB Database

- absolute PCV type means
- type means computed from several individually robot-based calibrated antennas
- rigorous adjustement uing the complete variance-covariance matrix of individual calibrations
- November 2018
 - 334 different antenna types
 - 2705 individual GPS antennas
 - 7718 individual GPS calibrations
 - 1316 individual GPS+GLO antennas
 - 3679 individual GPS+GLO calibrations
- free access to information on PCV pattern (graphics, ARP- und NRP definition, etc.)
- certain type means are provided to IGS/EPN (see eg IGS igs14.atx)
- licence for actual access to absolute PCV (numerical values of PCV)
- http://gnpcvdb.geopp.de/

GNSS carrier phase frequencies

Frequency [MHz]	GPS	GLONASS	Galileo	BDS	QZSS	SBAS	IRNSS
2492.028							S
1602+k*9/16 (k=-7+12)		G1					
1600.995		G1 CDMA					
1575.42	L1		E1		L1	L1	
1561.098				B1			
1278.75			E6		L6 (LEX)		
1268.52				В3			
1268.06		G2 CDMA					
1246+k*7/16 (k=-7+12)		G2					
1227.60	L2				L2		
1207.140			E5b	B2			
1202.025		G3, CDMA					
1191.795			E5a+E5b				
1176.45	L5		E5a		L5	L5	L5

GLONASS FDMA

G1 1598.0625 ... 1608.75 MHz

G2 1242.9375 ... 1251.25 MHz

FDMA Frequency Devision Multiple Access
CDMA Code Devision Multiple Access

- Extension of absolute robot-based GNSS antenna calibrations for new GNSS and signals
 - Robot calibration starts with GNSMART 2
 - suitable GNSS receivers for calibration with all frequencies and signals are selected and recently delivered, testing is ongoing
 - operational calibration to start in December 2017
 - detailed analysis of already existing logged data pending
 - no full constellation or signal availability for several GNSS
 - adjusted modeling (single signal in space approach)
 - effect on calibration duration to be verified
 - type mean correction for some new frequencies for an interim period
 - GNSS biases
 - separation of antenna effects requires
 - proper handling of phase and code receiver biases

- Other biases to be considered and/or calibrated
 - significant receiver tracking biases in codes and phases exist depending on
 - receiver type
 - firmware version
 - settings (smoothing, multipath mitigation)
 - signal tracking modes
 - station/satellite combination
 - all this is to be part of another talk …

- . GNSS Antenna Calibration Overview
- Absolute Robot-based GNSS Antenna Calibration
- . GNSS Antenna Group Delay Variation
- ANTEX Format Status
- . Summary/Outlook

GNSS Antenna Group Delay Variations

DM-type geodetic chokering antennas

• TRM159800.00 SCIS (Geodetic Choke)

• TRM159800.00 NONE (Geodetic Choke)

• TRM59800.00 NONE (Geodetic Choke)

JAVRINGANT DM SCIS (Geodetic Choke)

geodetic chokering antennas DM-type

geodetic chokering antennas

HXCCGX601A HXCS (Geodetic Choke)

• HXCCG7601A HXCG (Geodetic Choke)

geodetic antenna

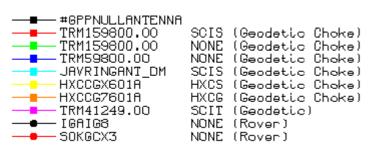
• TRM41249.00 SCIT (Geodetic)

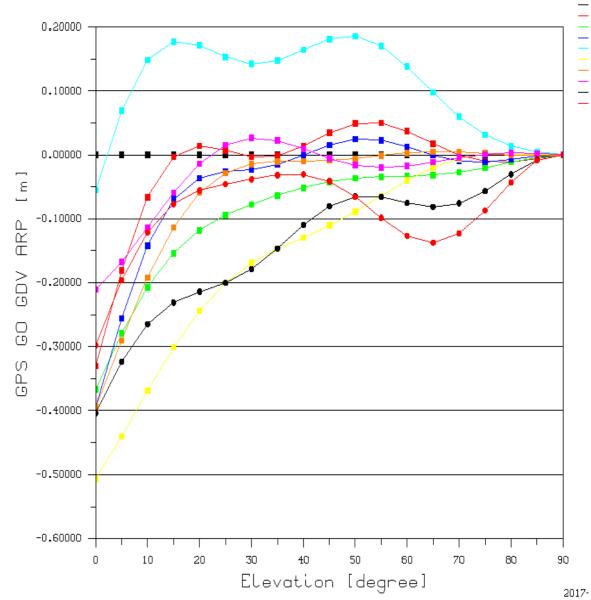
SOKGCX3 NONE (Rover)

 \sim IGAIG8 NONE (Rover)

geodetic antenna with SCIT

rover antennas





GNSS Antenna Group Delay Variations

- **examples** of some **GDV** pattern
 - geodetic choke ring antennas with and without radome
 - geodetic antenna with radome
 - rover antennas
 - significant effects for code sensitive applications
 (e.g. PPP utilizing Melbourne-Wübbena linear combination)

- . GNSS Antenna Calibration Overview
- Absolute Robot-based GNSS Antenna Calibration
- GNSS Antenna Group Delay Variation
- . ANTEX Format Status
- . Summary/Outlook

ANTEX Format Status

• ANTEX 1.4 supports

all GNSS systems (except IRNSS)

all frequencies (except GLONASS G3 and L1+L2 CDMA)

satellite antenna PCV (offset and variation)

 definition of mean phase is center position = CM position + phase center offset vector

- receiver antenna PCV (offset and variation)
 - definition of mean phase is center position = ARP position + phase center offset vector
- RMS information of offset and/or PCV

CM ARP center of mass antenna reference point

ANTEX Format Update Discussion

- IGS antenna working group (chaired by Arturo Villiger) is currently discussing (IGS Workshop 2017, Paris)
 - fast update of ANTEX 1.5
 - rigorous update ANTEX 2.x later (basic changes)
- initial proposal of ANTEX 1.5 modifications
 - optional satellite antenna related to SRP
 - optional GDV and GDV RMS section
 - multiple identifiers for identical frequencies used by different GNSS on one line
 - optional signal code
 - clarification of the FREQ RMS section content
 - integration of IRNSS
 - controversial dissussion on
 - optional CNR and CNR RMS section

EUP 4th EUPOS Technical Meeting November 21-22, 2017, Bratislava, Slovakia

ANTEX Format Update

- major benefits of update of ANTEX format
 - GNSS application
 - corrections for group delay variations (GDV)
 - essential for PPP applications
 - GNSS service provider
 - flexible handling of center of mass (CM)
 and satellite antenna pattern (PCV, GDV)
 using satellite reference point (SRP)

- . GNSS Antenna Calibration Overview
- Absolute Robot-based GNSS Antenna Calibration
- GNSS Antenna Group Delay Variation
- ANTEX Format Status
- . Summary/Outlook

Summary/Outlook

- modernization and new GNSS
- impact on absolute GNSS antenna calibration
 - more carrier frequencies (PCV)
 - more signals (GDV)
 - different satellite payloads (PCV and GDV, CM issue)
- consequently need for
 - sohisticated PCV and GDV correction model and format for GNSS receiver and satellite antenna
- benefits for GNSS service provider and user with respect to GNSS positioning accuracy